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Abstract—An analysis of cascaded commensurate transmission-
line C-section all-pass networks is presented. The analytical form of
the transmission coefficient is found to have a very simple form,
intimately related to the reflection coefficient of the stepped-
impedance transformer prototype of the cascaded C-section. The
phase function of cascaded commensurate transmission-line C-
sections is investigated and found to be the arctangent of a reactance
function in tan g. Last, general, exact synthesis procedures for de-
signing cascaded commensurate transmission-line C-section all-pass
networks to have prescribed phase characteristics are presented, and
two design examples are given. One of the examples is the exact
design of a 3-section Schiffman 90° phase shifter, which has not been
previously reported in the literature.

INTRODUCTION
THE CASCADED commensurate transmission-

line C-section all-pass network is shown dia-
grammatically in Fig. 1. Signals incident to
Port 1 are transmitted without reflection to Port 2.
The phase lag between Ports 2 and 1, however, may
be prescribed by the designer (insofar as the network is
capable of realizing the prescribed characteristic).
These networks are therefore useful as phase equalizers
and phase shifters. It has also been suggested! that these
networks be used to synthesize a linear time-delay wvs.
frequency characteristic for use in pulse compression
networks. Schiffman [1] used C-sections to construct
wide-band 90° differential phase shifters. He presented
designs calling for single C-sections, double (C-sections,
and arrays of single C-sections. Since Schiffman’s paper,
however, little attention has been given to the general
cascaded transmission-line C-section, although recently
Shelton and co-workers [2] have described an approxi-
mate synthesis procedure based on a first-order theory;
and Zysman and Matsumoto [3] have investigated
some of the analytic properties of cascaded C-sections.
The present paper presents an investigation of the
analytic properties of cascaded commensurate trans-
mission-line C-sections, and gives a general, exact syn-
thesis procedure for realizing cascaded commensurate
transmission-line C-sections to have prescribed phase
characteristics.
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Fig. 1.

Cascaded transmission-line C-section
all-pass network of N sections.

ANALYSIS

Jones and Bolljohn [4] show that the condition that
a single C-section be matched at all frequencies is

Zo = \ZoeZ oo, (1)

where Z, is the characteristic impedance of the coupled
lines, Z,, is the even-mode impedance of the coupled
lines, and Z,, is the odd-mode impedance of the coupled
lines.

Equation (1) is also the condition for a pair of coupled
lines to be a directional coupler. Thus, the C-section
may be regarded as a directional coupler with two ad-
jacent ports connected by a zero-length line. This
analogy carries over directly to cascaded transmission-
line C-sections: cascaded transmission-line C-sections
may be considered as cascaded transmission-line direc-
tional couplers having two adjacent ports connected by
a zero-length line.

Let the scattering matrix for a cascaded transmission-
line directional coupler be

b1 0 S12 0 S14 ay
bz S12 0 514 0 as
= . 2)
bs 0 Su 0 Si|as
by S 0 S 0 Jlas

Counsider the effects of connecting Ports 3 and 4 by a
zero-length line. Utilizing (2) together with the boun-
dary condition

b4 = a3, (3)
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it is easily shown that

b2 '5,142
— = Su+

- 4
ai 1'—534 ()

Next, using the condition for lossless networks that the
scattering matrix S satisfy

§5*% =1, ©)
where
S* is the conjugate of .S
and

I is a 4 X 4 identity matrix,

it can be shown that

—Su*S
Sp = — (6)

14*
Substituting (6) into (4) gives

S1Su* + .5
bl = S5 S <7>
SIZ Sl4+Sl4

It is clear from (7) that [b2/all =1, since the right side
of the equation is a complex number divided by its con-
jugate. The phase angle of bs/a; is given by the phase
angle of the right side of (7).

At this point it is necessary to introduce the “stepped-
impedance transformer-directional coupler” analogy.
Feldshtein [5], Young [6], and Levy [7] have shown
that every cascaded transmission-line directional cou-
pler has a cascaded stepped-impedance transformer
analog, or prototype. They have also pointed out that
the reflection coefficient v of the stepped-impedance
transformer prototype and the coupling coefficient Sz
of the cascaded directional coupler are identical, pro-
vided the line impedances of the stepped-impedance
transformer are the Z,, of the cascaded directional
coupler. Similarly, the transmission coefficient of the
stepped-impedance transformer is identical to the
transmission coefficient Sy of the directional coupler.

Seidel and Rosen [8] have shown that the necessary
and sufficient conditions that a function L represent the
insertion loss of cascaded commensurate transmission
lines is that it be of the form

L = Insertion loss = L,(sin? §), (8)

where L, is a polynomial of degree #; # is the number of
cascaded lines, and L is greater than or equal to 1 for
all 8. Using Richards’ transformation [9]

s =jtan, 9

where j=+/—1, the insertion loss function may be
made a function of s2. From (9) is obtained

-5

sin? § = (10)

—
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Substituting (10) into (8) gives [13]
P.(s?)

L=—2"1,
1 — s

(11)
where P, is an #nth degree polynomial differing from
L,. Now
1 1
L = = s
ta(@a(=3) 1 = yu(va(—s)

where ,(s) and v.(s) are, respectively, the transmission
and reflection functions of the stepped-impedance trans-
former prototype. £.(s) and v.(s) may be determined
from (12) by well-known procedures [14] yielding

(12)

,\/1 — s2)n
ta(s) = W= (13)
D,(s)
and
) Na(s) (14
a\S) = )
Y D,(s) : )
where
D,(s) is a Hurwitz polynomial? chosen from factors
of P,(s%)=0,
and

N.(s)is a polynomial (not necessarily Hurwitz)
chosen from the factors of P,(s?) — (1 —s%)*=0.

Recalling the analogies that have been made, we can
identify ¢.(s) with Su(s), and v,(s) with Sis(s) of (7).
Substituting (13) and (14) into (7) gives
Nu(s) + Du(—s)
bz/dl = .
Nn<_5) + Dn<s)

(15)

Equation (15) is a surprisingly simple result which is
useful for analysis and, moreover, provides the key to
an exact synthesis procedure. The phase shift through
the cascaded C-section for real frequencies s=j tan 6 is
given by

B =24N.(s) + D.(—s)

(16)

s=j tan 0y

where the symbol Z stands for “the angle of,” and 3 is
the phase shift through the cascaded C-section.

The previous results may be summarized briefly as
follows. To calculate the phase shift through a cascaded
C-section all-pass network, compute the reflection co-
efficient of the corresponding stepped-impedance trans-
former prototype using the even-mode impedances of
the C-sections for the line impedances of the trans-
former. Let the reflection coefficient be

N.(s)
D, (s) .

7n(5> =

2 A Hurwitz polynomial is one whose zeros have negative real
parts.
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Then the phase shift through the C-section all-pass net-
work is

24 No(s) + Du(—s)

s==j tan -

SYNTHESIS

The synthesis procedure follows readily from (16),
(14), (12), and (11). Let F.(s) be an admissible poly-
nomial of degree n defined as

No(s) + Du(—s) = Fu(s). e¥))

The properties of F,(s) will be described later. For the
time being we can say that F,(s) corresponds to one-
half the phase function (i.e., 8/2). Furthermore, it can
be shown using (14), (12), and (11) that

D, (s)Dy(—s) — No(s)Nu(—s) = (1 — sH)m.  (18)
Equations (17) and (18) provide two conditions by
by which the polynomials N,(s) and D,(s) can be
determined.

As a preliminary step, and for future reference, let
us make the following definitions:

Nu(s) = no + nas + nas2 + - - - m,sm (19)
Du(s) = do + dus + dos® + + - - dus” 20)
Fu(s) = Ao+ dis + A+ - - - A5 1)
D.(s) = do+ dos®> + dus* + - - - (22)
Fols) = Ao+ Aas? 4+ Ayst+ - - - (23)

where the subscript ¢ in (22) and (23) is used to denote
the even parts of the polynomials D,(s) and F.(s).

DU(S) = dls + d333 + d555 + L
FO(S) = A1S+ Asss—‘— ‘45S5+ e

(24)
(25)

where the subscript o in (24) and (25) is used to denote
the odd parts of the polynomials D,(s) and F,(s).

N, (s) must have a factor of s since v,(s) =0 at s=0.
Therefore,

1o = 0. (26)

It can also be shown that there is no loss of generality in
choosing the constant term of F,(s) equal to 1. Thus,

Ao = 1, (27)

and by (17),

dy = 1 (28)

also. In spite of the simplifications of (26) to (28), we
will retain the particular forms of (19) to (21) for nota-
tional purposes for equations appearing in the Appendix.

Next, solving (17) for N,(s) and substituting the re-
sult into (18) gives

Du()Fu(s) + Du(—8)Fu(—s)

= (1 — s)" + Fuo(s)Fa(—s). (29)
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Using the identities
D,(£s) = D.(s) + Dy(s) (30)
F.(£s) = F.(s) £ D.(s), (31)
(29) reduces to
2[D3<S)Fe(5) + DD(S)FO(S)]
= (1 ="+ [F®]* = [Fo]. (32)

Equation (32) is the fundamental equation that readily
permits determination of the coefficients d;. By sub-
stituting (22) to (25) into (32) and equating coefficients
of like powers of s, a set of simultaneous linear equations
is obtained. Solutions of this set give the d,. Once nu-
merical values for the d, are known, the coefficients #;
are easily obtained from (16), which reduces to the
following set of trivial equations.

n,+ (—1)id, = 4, (33)

It turns out that the above procedure for obtaining
the set of linear equations (32) for the d, can be written
down by inspection by using a few simple rules. These
rules are given in the Appendix. Also given in the Ap-
pendix are explicit solutions for the d; and #, for up to
3 sections (i.e., n=3) together with the appropriate
linear set of equations for the 4-section case.

After the coefficients d; and #n; have been obtained,
the reflection coefficient is constructed according to

N, (i)
D.(s)

fori =0,1, - -

(14)

Vals) =

From v,(s) the normalized input impedance is deter-
mined by the rule
1+ 7.(s)

S =TT

and last, from Z,(s) the even-mode impedances of the
stopped impedance prototype are extracted [7], [8],
[11], [12].

The synthesis procedure may be briefly summmarized
as follows. To synthesize a prescribed admissible phase
function F.(s), the coefficients of the polynomials N,(s)
and D,(s) are determined by the rules given in the Ap-
pendix. Next, the normalized input impedance function
is formed using (14) and (34). Last, the even-mode irm-
pedances of the stepped-impedance prototype are ex-
tracted from the normalized input impedance.

(34)

THE PrAsE FUNCTION

In order to apply the previously described synthesis
procedure, it is necessary to ascertain what are the ad-
missible functions F,(s). It was previously shown that
8/2 equals the angle of F,(s) for s=7 tan § and, therefore,

odd part of F,(s) |

7 even part of Fn(s)| s=7 tan 0

B8/2 = LF,(s) = tan™! (35)
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Since 8/2 is a monotonic increasing function of 6, it is
hypothesized that the argument of the right side of (35)
is a reactance function in the variable tan 6. Thus for
#n even, the general form of the argument of the right
side of (35) must be

odd part of F,(s)
jleven part of F.(s)]

s=j tan §

—Bj tan (1 — Bj? tan?8) « - -

= y o (36)
(1 - Bs*tan?8) - - - (1 — B,*tan?9)
and for # odd
odd part of F.(s)
jleven part of F.(s)] | s tan o
—B;tan6(1 — Bs*tan?8) - - - (1 — B,2tan*#@
_ —Bitang(i — B tante) - - - ( ), e

(1 — Be?tan?6) - - - (1 — B,1* tan*9)

where the coefficients B, are positive real constants
which satisfy

By> By > By- -+ > B, (38)

and?

B, < n. (39)

Once the constants B; are ascertained, F,.(j tan 8) can
be constructed by adding the denominator to j times
the numerator. F,(s) is obtained by replacing j tan §
by s and —tan? 8 by s%

Equations (36) and (37) display clearly the character-
istic of the phase functions of cascaded commensurate
transmission-line C-section all-pass networks. Further-
more, the characteristics of reactance functions are de-
scribed in detail in the literature [10]. It is seen from
(36) and (37) that the designer is free to choose the
values of 6 for which 8/2 equals 90°, 180°, 270°, etc.,
by choosing the locations of the poles and zeros. The
values of 8 for which 8/2 equals 90°, 270°, 450°, etc.,
correspond to the zeros of the denominator. The values
of 0 for which 8/2 equals 180°, 360°, 540°, etc., corre-
spond to zeros of the numerator. The remaining vari-
able, By, leaves to the designer one parameter to “shape”
the phase function or impose one other condition. Once
the reactance function is defined, the constants 4; of
F,(s) are easily obtained and the previously described
synthesis procedure may be applied.

Examples

Two examples are presented next to order to il-
lustrate the foregoing theory. In the first example, a

3 The restriction B; <% can be justified by noting that the slope
of the phase function at #=0 is —2B;. Since the absolute value of
the slope at §=0 must be less than the slope of uncoupled lines of
length 2#6, we have

2B, < 2n
B1S n.
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Schiffman 90° differential phase shifter of 1 C-section
[1] is “redesigned.” From (37) for n=1,

B/2 = tan—! (— B, tan 6). (40)

A 90° differential phase shifter is obtained by using
a reference line which is 30 long so that, at §=90° the
differential phase shift is automatically 90°. This is seen
from the equation,

—39 — 2tan~' (—Bjtanf) = — 90° at 6 = 90°. (41)

Suppose it is decided to make the slope of the phase of
the reference line and the C-section equal at §=90°.
Then

d(—36) d (
—— = — 3= —2tan! (—Bltanﬁ}
de dé
—2B;sec? @ —
= = — (42)
1 4 Bi*tan? 6 lg_g0® B,
Thus,
Bl = %, (43)
and
Fi(jtanf) =1 —;2/3 tanﬁ} ()
Fis)y =1—2/3s

From (69) and (70) in the Appendix, it is determined
that

13
dl = —
12 (45)
1y = 5/12.
Therefore,
n1(s) 5/12 s
§) = = 46
v1(s) PRI T (46)
14+ —=
12

The input impedance of the transformer prototype is
T4+ ~vi(s) 14+3/2s
Tl 14235

from which Z,./Z, is determined to be

(47)

in

oce

= 3/2.

The reciprocal of Z,./Z, is Z,,/Z, so that [4]

00

= 2/3.
0

The ratio of Z,, to Z,, is 2.25 which is near the value
given in Schiffman’s paper [1] for the same design. The
two results, of course, should not agree precisely since
Schiffman chose other criteria than equal slopes at
6=190°.

The second example will be the synthesis of a 3-
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section C-section 90° differential phase shifter. The ap-
propriate phase {unction is, by (37),

j —Bi tan 6(1 — Bj?® tan? 2|

2 = tan—! - .
B/2 = tan 1 (1 — By®tan? ) f 8)

The reference line is chosen 76 long so that the differen-
tial phase shift is given by
—Bitan6(1 — Bs?tan?6
1 tan 6( 3 )] - (49)
(1 — By tan? )

AP = 2 |:-3.5 6 — tan™?!

The differential phase shift is automatically —90° at
6=190° by virtue of having selected the reference line to
be 78 long. We may also choose B, and Bj; to give exactly
90° phase shift at two other frequencies.

At B/2=—90°,
1 — Bs®tan®6 = 0. (50)
6,
Therefore, at § =0, (49) reduces to
AP = 2} —3.50, + 90°}. (51)
Letting A® = —90° and solving (51) gives
g, = 2—79 = 38.57°. (52)
7
Substituting (52) into (50) gives
Ba? = cot? 38.57° = 1.57256. (53)
In a similar way, it is found that, at §=8,,
76, — 360° = 90°, (54)
6; = 64.28°, (55)
and
B3? = cot? 64.28° = 0.23202. (56)

The coefficient B; is chosen to limit the maximum de-
viation from 90° to a specified amount over as wide a
frequency band as possible.

To determine By, it was assumed that the phase char-
acteristic would have a maximum deviation from 90° at
a value of 8 roughly halfway between 38.5° and 64.3°.
Several trial values of By were substituted into (49) and
A® was calculated. It was quickly found that for 8 =50°
and B;=1.8, A®= —88.6°. Therefore, this value of B,
was selected. Next, (49) was computed for 5°<60<90°
giving the result shown in Fig. 2. It was determined
from the data of Fig. 2 that the differential phase shift
was —90°+4° over a 4.52:1 frequency band.* Having
determined a value for B, the 3-section phase shifter
was synthesized as follows:® Using (53), (56}, and a value
of 1.8 for By, the function F3(s) was determined to be

4 Based on the results given in Fig. 2, it is probable that a value
of B; of about 1.85 or 1.9 would be closer to an optimum value.

5 The synthesis which follows was carried out with a desk calcu-
lator carrying only 5 digits after the decimal point. Hence, some
roundoff error is anticipated in the result.
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Fig. 2. Differential phase shift of 3-section 90° phase shifter.

(57)
Next, from (75) through (80) in the Appendix, it was
found that

Fi(s) =1 — 1.85s + 1.572565* — 0.417635°.

d; = 1.40604 13 = 0.98842
d: = 3.90848 ny = — 2.33592
d; = 3.90471 ny = 2.10471
dy = 1. (58)
Therefore,
Ny(s)
vs(s) = Di(s)
2.10471s — 2.33592s% 4 0.98842s8
= ¥ 3.904715 & 3.908485 + 14060s: )
From v3(s), Zia(s) was calculated giving
Zun(s) = 1+ 6.00942s + 1.57256s* + 2.3944653 . (60)

1+ 1.8s 4 6.24445% 4 4176253

The normalized even-mode impedances (Z,./Z,)t were
next extracted using the techniques given in [12].
The results are:

Zoe

< ) = 1.16005 (61)
Zo 1
Zue

<*> = 1.58264 (62)
Zo 2

and

Zoe .

( ) = 3.26829. (63)
Zo 3

In order to check these results, these values of normal-
ized even-mode impedances were substituted into ex-
pressions which gave the phase shift 8 directly in terms
of the even-mode impedances. Several values of 8 were
tried and the calculated phase shift agreed with the
values predicted by the theory.®

8 The expressions for 8 in terms of the normalized even-mode im-
pedances were derived by B. M. Schiffman, who also kindly checked
the results for several values of 6.
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Discussion

This paper has considered three aspects of cascaded
commensurate transmission-line C-section all-pass net-
works:

1) analysis

2) a theoretical solution for exact synthesis of pre-
scribed, admissible, phase shift functions, and

3) a description of the basic form of the phase shift
function in the variable tan 6.

A fourth aspect, important but clearly distinct from
Items 1, 2, and 3 above, is the approximation problem.
Certainly, in any given practical problem it is unlikely
that the designer will be given a specified phase function
that fits the form of (36) or (37). Therefore, in most in-
stances it will be necessary to obtain an approximation
to the required function. Often an equal-ripple approxi-
mation is desired: the optimum approximation. This
aspect of the synthesis problem has not been considered
in this paper. However, it is important to emphasize
that the form of the phase function exhibited by (36)
and (37), while not making readily evident an optimum
solution to the approximation problem, does permit
considerable insight into a practical solution to the ap-
proximation problem. It is clear from previous discus-
sion and from (36) and (37) that when the required
phase function is an integer multiple of 90°, the right
side of (36) or (37) must be in the vicinity of a pole or
zero. As exemplified in the design of the 3-section 90°
phase shifter, it is likely that suitable choices of values
for B, in most applications are those which give zeros or
poles at precisely the prescribed points. This then
leaves a single parameter to optimize the response. In
addition, it is evident that the values of B, (¢{>2) can-
not vary much from these values. In this respect, one
can conjecture that, at least in the general case, equal-
ripple approximations to prescribed phase shift function
(even linear phase shift functions) are not always ob-
tainable. The reason for this is that the coefficients
B; (1> 2) are not variable over the entire range of real
numbers but only over an extremely restricted range.

The results obtained from the 3-section 90° phase
shifter indicate that the Z,, tend to increase in value in
the interior parts of cascaded C-sections. This is anal-
ogous to what happens in cascaded directional couplers.
The coupling in decibels required by the 3rd section is
[12]

(Zoo/ Zo)? — 1

—20logyp—————
B Lol 7+ 1

B, (64)

which gives a value of 1.63 dB. This requires very
tightly coupled lines, indeed. It can be anticipated that
for larger numbers of cascaded C-sections, the required
coupling in the interior sections will be even greater, and
therefore impractical to realize with the present state
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of the art. One method [2] that may be used to get
around this is to wuse several groups of cascaded
C-sections in tandem, wherein each group provides only
a specified fraction of the desired total phase shift.
Thus, for example, if a 6-section C-section 90° differ-
ential phase shifter is called for, it might be better to
design two 3-section C-section 45° phase shifters and
connect them in tandem.

CONCLUSIONS

Cascaded transmission-line C-section all-pass net-
works are needed in many microwave systems that re-
quire phase shaping or phase equalization. The formulas
for analysis of commensurate transmission-line C-
sections all-pass networks are relatively easy to use and
should prove useful for diagnostics. The synthesis
method that was presented permits exact design of cas-
caded commensurate transmission-line C-section all-
pass networks from admissible prescribed phase
functions.

It was also found that the phase characteristic of
cascaded commensurate transmission-line C-sections is
the arctangent of a reactance function in the variable
tan 6. This result should enable the designer to deter-
mine more easily what phase characteristic can be
realized or approximated, as well as providing insight
into the approximation problem. The formulas which
were presented for designs of 1-, 2-, and 3-section
(C-sections require only a slide-rule or desk calculator.
However, for a wide range of synthesis problems it will
probably be advantageous to use a digital computer.
More than 3 sections will almost certainly require a
computer.

The example design of a 3-section 90° differential
phase shifter had a tolerance of +4° over a 4.52:1 fre-
quency band. The tolerance could probably be improved
by choosing the design constant By equal to 1.85 or 1.9,

APPENDIX

GENERAL FORMULAS FOR N, (s) AND D,.(s) for
CAscADED COMMENSURATE-TRANSMISSION
LiNE C-SECTIONS

vu(s) = Nu(s)/ Du(s) (65)
No(s) = nas + mas? + nas® + - - - 5" (66)
D.(s) = do+ dis + das> + - - - ds™ (67)
Fu(s) = do+ Aws+ Ass?+ - - - 457, (68)
where in (67) and (68) 4, and d, are equal to 1.
One Section
di = (—A2 — 1)/(24y) (69)
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Two Sections (—1)%!
b= ——— (86)
d2 = (42* 4+ 1)/(24,) (71) il — 9)!
e = (Ag® — 1)/(245) (72) (fi = 2. Aj4sy,  (jevenand <n) (87)
7=0,2
di = — 2+ 2d,+ 4:%),/(24 73
1 (24 2d:+ A1)/ (244) (73) (f). = > A,4s_;  (jodd and <n). (88)
ny= A1+ di. (74) i=1,3
Three Sections The. coefficients #; are obta%ned from (34) after the
. coefficients d, have been numerically evaluated.
dy = (—d4s* — 1)/(2453) (75) Note that the forms of the rules given in (84) through
ng = (As? — 1)/(245) (76)  (88) are such as to make it possible to write down (82)
30 — da) — A2 4,2 in matrix form by inspection. Let the first row and
dy = (3 5) (s + mg) + 426 + 42) (77) column of the matrix be initialized as the zero row and
2(ds + A142 — n3) zero column. Then the a,; entries in the coefficient ma-
e = Ay — dy (78) trix have the property that the sum of the jth column
d the subscript of 4 equals 2¢. If this is not possible
dy= — 3+ A + 2ds)/ (24 an b 4 : p ’
! @+ As* + 2d2)/ (241 (79) the entry is 0. The column matrix of constants, (;, con-
ny = 41+ du (80)  sists of 3 terms: by, (f.):, and ()« The constants b, are

Four Sections

The coefficients d; are given by the solution to the
following system of equations:

244 O 0 0 0 do

24, 24, 24, O 0 dy
244 245 24, 24 24,1} ds
0 0 24y 245 24, |1 d;
0 0 0 0 24, I_d4
2
—4 4+ 24, — 442

I

64+ 245+ A% — 24,45
—4 + 24,44 — A5?
1+ 4.2 J

(81)

The coefficients #; are obtained using the d, from above
and (34) of the text.

General Case of n Sections

In the general case the coefficients d; are obtained
from the solution of the following linear set of equations.

Zawdj = Cz; for¢ = 0, 1, -

(82)
=0
For the following equations define
A, =0 forp <0 or >, (83)
where p is a dummy index.
The coefficients a,; are given by
ay = 249, forie,j=0,1, -5 (84)
The C; are given by
Ci=b;+ (f)i — (fo), fori=0,1,---n (85)

where

the binomial coefficients multiplied by (—1)% The con-
stants (f.), are formed by summing all possible terms of
the form A,A4,., where m and #z are even integers (0 is
taken as even) satisfying m+#n=2{. When m=#n a
particular combination will occur twice, once for A,,4.,
and the other 4,4,. When m=#n, the combination
appears only once. Combinations formed such that
m-ns%2i are taken as 0. An analogous rule holds for
the constants (f,),, except that m and # are odd integers.
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