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Analysis and Exact Synthesis of Cascaded

Commensurate Transmission~Line

C-Section All~Pass Networks

EDWARD G. CRISTAL, SENIOR MEMBER, IEEE

Abstract—An analysis of cascaded commensurate transmission-
line C-section all-pass networks is presented. ‘l’he analytical form of

the transmission coefficient is found to have a very simple form,

intimately related to the reflection coefficient of the stepped-

impedance transformer prototype of the cascaded C-section. The

phase function of cascaded commensurate transmission-line C-
sections is investigated and found to be the arctangent of a reactance

function in tan & Last, general, exact synthesis procedures for de-

signing cascaded commensurate transmission-line C-section all-pass
networks to have prescribed phase characteristics are presented, and

two design examples are given. One of the examples is the exact

design of a 3-section Schiffman 90° phase shifter, which has not been
previously reported in the literature.

INTROIXTCTION

T

HE CASCADED commensurate transmission-

Iine C-section all-pass network is shown dia-

grammatically in Fig. 1. Signals incident to

Port 1 are transmitted without reflection to Port 2.

The phase lag between Ports 2 and 1, however, may

be prescribed by the designer (insofar as the network is

capable of realizing the prescribed characteristic).

These networks are therefore useful as phase equalizers

and phase shifters. It has also been suggested that these

networks be used to synthesize a linear time-delay vs.

frequency characteristic for use in pulse compression

networks. Schiffman [1] used C-sections to construct

wide-band 90° differential phase shifters. He presented

designs calling for single C-sections, double C-sections,

and arrays of single C-sections. Since %hiffman’s paper,

however, little attention has been given to the general

cascaded transmission-line C-section, although recently

Shelton and co-workers [2] have described an approxi-

mate synthesis procedure based on a first-order theory;

and Zysman and NIatsumoto [3] have investigated

some of the analytic properties of cascaded C-sections.

The present paper presents an investigation of the

analytic properties of cascaded commensurate trans-

mission-line C-sections, and gives a general, exact syn-

thesis procedure for realizing cascaded commensurate

transmission-line C-sections to have prescribed phase

characteristics.

Manuscript received November 26, 1965; revised April 4, 1966.
The author is with the Stanford Research Institute, Menlo Park,

Calif.
~ L. Young, private communication.

JUNE, 1966

PORT 2

L-..

r--’ \

.X5

-“~

1
..72

PORT 1
. ..I-- \

\\ , .—.

\

‘\

\
L —.

NOTE ALL SECTIONS ARE 8 -DEGREES

I?ig. 1. Cascaded transmission-line C-section
all-pass network of N sections.

ANALYSIS

Jones and Bolljohn [4] show that the condition that

a single C-section be matched at all frequencies is

z. = 4ZOZO0, (1)

where Z. is the characteristic impedance of the coupled

lines, 2.. is the even-mode impedance of the coupled

lines, and Zoo is the odd-mode impedance of the coupled

lines.

Equation (1) is also the condition for a pair of coupled

lines to be a directional coupler. Thus, the C-section

may be regarded as a directional coupler with two ad-

jacent ports connected by a zero-length line. This

analogy carries over directly to cascaded transmission-

line C-sections: cascaded transmission-line C-sections

may be considered as cascaded transmission-line direc-

tional couplers having two adjacent ports connected by

a zero-length line.

Let the scattering matrix for a cascaded transmission-

line directional coupler be

(2)

Consider the effects of connecting Ports 3 and 4 by a

zero-length line. utilizing (2) together with the boun-

dary condition

b~ = as, (3)
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it is easily shown that

bz S14’
— = S12 +
al 1 – SW

(4)

Next, using the condition for lossless networks that the

scattering matrix S satisfy

SS* = 1, (5)

where

s* is the conjugate of S

and

I is a 4 X 4 identity matrix,

it can be shown that

‘s12*s14
S34 =

S14*

Substituting (6) into (4) gives

S12s14’ + S14 .
bz/al =

s12*s14 + s14*

(6)

(7)

It is clear from (7) that ]bz/al I =1, since the right side

of the equation is a complex number divided by its con-

jugate. The phase angle of bz/ul is given by the phase

angle of the right side of (7).

At this point it is necessary to introduce the ‘(stepped-

impedance transformer-directional coupler” analogy.

Feldshtein [5], Young [6], and Levy [7] have shown

that every cascaded transmission-line directional cou-

pler has a cascaded stepped-impedance transformer

analog, or prototype. They have also pointed out that

the reflection coefficient v of the stepped-impedance

transformer prototype and the coupling coefficient S12

of the cascaded directional coupler are identical, pro-

vided the line impedances of the stepped-impedance

transformer are the Z.. of the cascaded directional

coupler. Similarly, the transmission coefficient of the

stepped-impedance transformer is identical to the

transmission coefficient sl~ of the directional coupler.

Seidel and Rosen [8] have shown that the necessary

and sufficient conditions that a function L represent the

insertion loss of cascaded commensurate transmission

lines is that it be of the form

L = Insertion loss = L~(sin2 0), (8)

where L. is a polynomial of degree n; n is the number of

cascaded lines, and L is greater than or equal to 1 for

all O. Using Richards’ transformation [9]

s=jtan O,

where j = ~ — 1, the insertion loss function

made a function of S2. From (9) is obtained

—s2
sinz 0 . —

1“ — s~

(9)

may be

(lo)

Substituting (10) into (8) gives [13]

Pn(s2)
L=

(1 – s2)n ‘
(11)

where P. is an nth degree polynomial differing from

Lh. NOW

1 1
L= (12)

L(s)tn( – s) = 1 – 7n(s)7n(–i ‘

where t.(s) and y.(s) are, respective y, the transmission

and reflection functions of the stepped-impedance trans-

former prototype. t.(s) and -y.(s) may be determined

from (12) by well-known procedures [14] yielding

(dl – s’)”
tn (s) = (13)

D.(s) ‘

and

N.(s)
‘y. (s) = —

D.(s) ‘
(14)

where

D.(s) is a Hurwitz polynomial chosen from factors

of P.(N) =0,

and

N.(s) is a polynomial (not necessarily Hurwitz)

chosen from the factors of P~(s2) — (1 —s2)” = O.

Recalling the analogies that have been made, we can

identify t,,(s) with S14(S), and ~~ (s) with S12(S) of (7).

Substituting (13) and (14) into (7) gives

f]T.(s) + D. (– S)
bz/al =

N,,(– S) + D,,(s) “
(15)

Equation (15) is a surprisingly simple result which is

useful for analysis and, moreover, provides the key to

an exact synthesis procedure. The phase shift through

the cascaded C-section for real frequencies s =~ tan O is

given by

D = 2~A~.(s) + D.(__s) Isejta. ~, (16)

where the symbol Z stands for ‘(the angle of, ” and ~ is

the phase shift through the cascaded C-section.

The previous results may be summarized briefly as

follows. To calculate the phase shift through a cascaded

C-section all-pass network, compute the reflection co-

efficient of the corresponding stepped-impedance trans-

former prototype using the even-mode impedances of

the C-sections for the line impedances of the trans-

former. Let the reflection coefficient be

N.(s)
‘y. (s) = —

D.(s) “

j A Hurwitz polynomial is one whose zeros have negative real
parts.
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Then the phase shift through the C-section all-pass net-

work is

2 ZIVn(~) + D.(–.$) Is-j t.1 d.

SYNTHESIS

The synthesis procedure follows readily from (16),

(14), (12), and (1 1). Let F,(s) be an admissible poly-

nomial of degree n defined as

f~rn(s) + D,, ( —s) = Fn (S). (17)

The properties of F.(s) will be described later. For the

time being we can say that F.(s) corresponds to one-

half the phase function (i.e., (?/2). Furthermore, it can

be shown using (14), (12), and (11) that

D,,(s) D.(–s) – .\’,,(~);~.(–S) = (1 – s’)”. (18)

Equations (17) and (18) provide two conditions by

by which the polynomials N,,(s) and D.(s) can be

determined.

As a preliminary step, and for future reference, let

us make the following definitions:

iv. (s) =

D,,(s) =

P,, (s) =

D,(s) =

F.(s) =

f2Q + ?Cls + ?42,s2 + . . . $zns” (19)

dO + dls + d,sz + . . . dns” (20)

Ao+ .41s+ A2S’ + . . .4ns’ (21)

dO + dzs’ + d~s4 + . ~ ~~ (22)

.40 + .42s2 + A.&+ ~ . (23)

where the subscript e in (22) and (23) is used to denote

the even parts of the polynomials D.(s) and F,,(s).

Do(s) = dxS + dSs3 + dss5 + . . . (24)

F.(s) = Als+ .43s3+ .’l&+ . . . (25)

where the subscript o in (24) and (25) its used to denote

the odd parts of the polynomials D.(s) and F.(s).

N.(s) must have a factor of s since -y.(s)= O at s = O.

Therefore,

!?20= o. (26)

It can also be shown that there is no loss of generality in

choosing the constant term of F.(s) eclual to 1. Thus,

.40 = 1, (27)

and by (17),

do=l (28)

also. In spite of the simplifications of (26) to (28), we

will retain the particular forms of (19) to (21) for nota-

tional purposes for equations appearing in the Appendix.

Next, solving (17) for N.(s) and substituting the re-

sult into (18) gives

Dn(s)Fn(s) + Dn(–s)Fn(–s)

= (1 – s’)”+ F.(s) ~n(–s). (29)

Using the identities

Dn(is) =

Fn(i.s) =

(29) reduces to

D.(s) +- DO(S)

F,(s) ~ DO(S),

(30)

(31)

2[D,(s)F,(s) + D.(s) F.(s)]

= (1 – S’)n + [F,(s)]’ – [F,(s)]’. (32)

Equation (32) is the fundamental equation that readily

perlmits determination of the coefficients di. By sub-

stituting (22) to (25) into (32) and equating coefficients

of like powers of s, a set of simultaneous linear equations

is obtained. Solutions of this set give the d,. Once nu-

merical values for the d, are known, the coefficients n i

are easily obtained from (16), which reduces to the

following set of trivial equations.

n, + (—l)id, = A,, for i = O, 1, . . . ,7. (33)

It turns out that the above procedure for obtaining

the set of linear equations (32) for the d, can be written

down by inspection by using a few simple rules. These

rules are given in the Appendix. Also given in the A,p-

pendix are explicit solutions for the d~ and nt for up to

3 sections (i.e., n = 3) together with the appropriate

linear set of equations for the 4-section case.

After the coefficients di and nc have been obtained,

the reflection coefficient is constructed according to

N,, (s)
7,,(s) = —— .

D,,(s)
(1.4)

From -yn(s) the normalized input impedance is deter-

mined by the rule

1-1- Y,,(S)
Zn (s) = ———

1 – ‘y,,(s) ‘
(34)

and last, from Z,,(s) the even-mode impedances of the

stopped impedance prototype are extracted [7], [8],

[11], [12].

The synthesis procedure may be briefly summarized

as follows. To synthesize a prescribed admissible phame

function F.(s), the coefficients of the polynomials N.(s)

and D.(s) are determined by the rules given in the A p-

pendix. Next, the normalized input impedance function

is formed using (14) and (34). Last, the even-mode im-

pedances of the stepped-impedance prototype are ex-

tracted from the normalized input impedance.

TIZE PHASE FUNCTION

In order to apply the previously described synthesis

procedure, it is necessary to ascertain what are the ad-

missible functions F.(s), I t was previously shown that

~/2 equals the angle of F.(s) fors =j tan 0 and, therefore,

odd part of F.(s)
~/2 = L F.(s) = tan-’ — . (35)

j even part of F.(s) ,=~ t.. II
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Since ~/2 is a monotonic increasing function of 8, it is

hypothesized that the argument of the right side of (35)

is a reactance function in the variable tan 0, Thus for

n even, the general form of the argument of the right

side of (35) must be

odd part of F.(s) I

j [even part of F. (.s) ] ! ,=i tan o

and for n odd

odd part of F.(s)

j [even part of F,,(s)] .=j tan 0

–B, tan 0(1 – Bs’ tan’0) . . ~ (1 – Bm’ tan’ O)
.—

(1 – BZ2 tan2 O) ~ ~ (1 – Bn-,z tan’0)
, (37)

where the coefficients B, are positive real constants

which satisfy

B2>B3>B4. ..>B. (38)

and3

C)nce the constants B~ are ascertained, F~(.j tan 6) can

be constructed by adding the denominator to j times

the numerator. F.(s) is obtained by replacing j tan O

by s and – tanz O by s’.

Equations (36) and (37) display clearly the character-

istic of the phase functions of cascaded commensurate

transmission-line C-section all-pass networks. Further-

more, the characteristics of reactance functions are de-

scribed in detail in the literature [1o]. It is seen from

(36) and (37) that the designer is free to choose the

values of 6 for which 0/2 equals 90°, 180°, 270°, etc.,

by choosing the locations of the poles and zeros. The

values of 6’ for which (3/2 equals 90°, 270°, 450°, etc.,

correspond to the zeros of the denominator. The values

of O for which D/2 equals 180°, 360°, 540°, etc., corre-

spond to zeros of the numerator. The remaining vari-

able, B 1,leaves to the designer one parameter to ‘ishape”

the phase function or impose one other condition. Once

the reactance function is defined, the constants A ~ of

Fn (s) are easily obtained and the previously described

synthesis procedure may be applied.

Examples

Two examples are presented next to order to il-

lustrate the foregoing theory. In the first example, a

s The restriction BI <n can be justified by noting that the slope
of the phase function at @= O is —2B1. Since the absolute value of
the slope at @= O must be less than the slope of uncoupled lines of
length 2n0, we have

2BI < 2n

Bl< n.

Schiffman 90° differential phase shifter of 1 C-section

[1] is “redesigned.” From (37) for n = 1,

B/2 = tan-’ (–B, tan 0). (40)

A !JOOdifferential phase shifter is obtained by using

a reference line which is 39 long so that, at 6 = 90°, the

differential phase shift is automatically 90°. This is seen

from the equation,

–3% – 2 tan-’ (–Bl tan 0) = – 90° at 0 = 90°. (41)

Suppose it is decided to make the slope of the phase of

the reference line and the C-section equal at O = 90°.

Then

Thus,

and

d(–30)
— . . 3 = $2tan-1 [– Bltan O}

dO

– 2BI sect O –2
—— —.

1 + Bl~ tanz O P=Qoo B1
(42)

BI = $, (43)

Fl(jtan O) = 1 –j 2/3 tan 0

}
(44)

F,(s) = 1 – 2/3 .s “

From (69) and

that

Therefore,

(70) in the Appendix, it is determined

nl(s) 5/12 S
71(s) =

—

dO + dIS –
l+l:s

(45)

(46)

The input impedance of the transformer prototype is

1 + 71(s) = 1+3/2s
Zin = ‘— (47)

1 – -yI(s) 1+2/3s’

from which Z../Zo is determined to be

z..
— – 3/2.
Z. –

The reciprocal of 2.,/2. is 200/20 so that [4]

zoo
— = 2/3.

The ratio of 206 to ZOO is 2.2.5 which is near the value

given in Schiffman’s paper [1] for the same design. The

two results, of course, should not agree precisely since

Schiffman chose other criteria than equal slopes at

0=900.

The second example will be the synthesis of a 3-
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section C-section 90° differential phase shifter. The ap-

propriate phase function is, by (37),

b/2 = tan-
, j –BI tan 0(1 – B,’ tan’ .9)~

1 (1 – B,’ tan’ f)) J “ ’48)

The reference line is chosen 70 long so that the differen-

tial phase shift is given by

[

–B1 tan f?(l -- BSZ tan’6)
A@ = 2 –3.5 @— tan–l

1
—– . (49)

(1 – B22 tan’0)

The differential phase shift is automatically – 90° at

6’= 90° by virtue of having selected the reference line to

be 70 long. We may also choose B2 anc[ B3 to give exactly

90° phase shift at two other frequencies.

At ~~2 = –90°,

l–

Therefore, at 0 = &.,

A@

-BT’ tan’ 0 = o.
I 6=9,

(49) reduces to

= 2[ –3.502 + 90”}.

Letting A@= – 90° and solving (51) gives

270
02 = ~ = 38.57°.

Substituting (52) into (50) gives

B,’ = cot’ 38.57° = 1..57256.

In a similar ~vay, it is found that, at {~= Os,

70, – 360° = 90°,

0, = 64.28°,

and

B,’ = cot’ 64.28° = 0.23202.

(50)

(51)

(52)

(53)

(54)

(55)

(56)

The coefficient BI is chosen to limit the maximum de-

viation from 90° to a specified amount over as wide a

frequency band as possible.

To determine Bl, it was assumed that the phase char-

acteristic would have a maximum deviation from 90° at

a value of O roughly half~vay between 38.5° and 64.3°.

Several trial values of B I were substituted into (49) and

A@ ~vas calculated. It was quickly found that for O= 50”

and Bl= 1.8, A@= —88.6°. Therefore, this value of BI
was selected. Next, (49) was computed for 5° SOS 90°

giving the result shomm in Fig. 2. It was determined

from the data of Fig. 2 that the differential phase shift

w-as — 90°24° over a 4.52:1 frequency band.~ Having

determined a value for JT31, the 3-sect-ion phase shifter

m-as synthesized as follo}vs:5 LJsing (53), (56), and a value

of 1.8 for B 1, the function Fs(s) was determined to be

A Based on the results given in Fig. 2, it is probable that a value
of BI of about 1.85 or 1.9 would be closer to an optimum value.

6 The svnthesis which follows was carried out with a desk calcu-
lator carr~:ing only 5 digits after the decimal point. Hence, some
roundrif error is anticipated in the result.

~ 8’wwt-
82 I I I I I I I I I I

d

I

1 tttl
o 20 30 40 50 60 70 80 90 100

0 — degwa$

Fig. 2. Differential phase shift of 3-section 90° phase shifter.

F~(s) = 1 – 1.8s + 1.57256sZ – 0.41763.s3. (57)

Next, from (75) through (80) in the Appendix, it was

found that

d, = 1.40604 ;23 = 0.98842

d, = 3.90848 Hz = — 2.33592

d, = 3.90471 ?zl = 2.10471

do = 1.

Therefore,

JV3(S)
y,(s) == —

D3(s)

2.10471s – 2,33592s2 + 0.9884:!s3
.

1 + 3.90471s + 3.90848s2 + 1.40604s3

From 73(s), Zi~l (s) was calculated giving

1 + 6.00942s + 1.57256s’ + 2.39446s3.

(58)

(59)

Zi.(S,) = — — ~ (60)
1 + 1.8s + 6.2444si + .41762s3

The normalized even-mode impedances (2.,/20); were

next extracted using the techniques given in [12].

The results are:

z.,H = 1.16005
z. ~

(61)

Zo,(--)= 1.58264
Z. ,

(62)

and

(-)Zo,
= 3.26829.

z. 3

(63)

In order to check these results, these values of nornlal-

ized even-mode impedances were substituted into ex-

pressions which gave the phase shift ~ directly in terms

of the even-mode im pedmmes. Several values of’ 6 u’ere

tried and the calculated phase shift agreecl with the

values predicted by the theory. G

GThe expressions for ~ in terms of the normalized even-mode im-
pedances were derived by B. M. Schiffman, who also kindly checked
the results for several values of d.
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DISCUSSION

This paper has considered three aspects of cascaded

commensurate transmission-line C-section all-pass net-

works:

1) analysis

2) a theoretical solution for exact synthesis of pre-

scribed, admissible, phase shift functions, and

3) a description of the basic form of the phase shift

function in the variable tan 0.

A fourth aspect, important but clearly distinct from

Items 1, 2, and 3 above, is the approximation problem.

Certainly, in any given practical problem it is unlikely

that the designer will be given a specified phase function

that fits the form of (36) or (37). Therefore, in most in-

stances it will be necessary to obtain an approximation

to the required function. Often an equal-ripple approxi-

mation is desired: the optimum approximation. This

aspect of the synthesis problem has not been considered

in this paper. However, it is important to emphasize

that the form of the phase function exhibited by (36)

and (37), while not making readily evident an optimum

solution to the approximation problem, does permit

considerable insight into a practical solution to the ap-

proximation problem. It is clear from previous discus-

sion and from (36) and (37) that when the required

phase function is an integer multiple of 90°, the right

side of (36) or (37) must be in the vicinity of a pole or

zero. As exemplified in the design of the 3-section 90°

phase shifter, it is likely that suitable choices of values

for B, in most applications are those which give zeros or

poles at precisely the prescribed points. This then

leaves a single parameter to optimize the response. In

addition, it is evident that the values of B, (i> 2) can-

not vary much from these values. In this respect, one

can conjecture that, at least in the general case, equal-

ripple approximations to prescribed phase shift function

(even linear phase shift functions) are not always ob-

tainable. The reason for this is that the coefficients

Bi (i> 2) are not variable over the entire range of real

numbers but only over an extremely restricted range,

The results obtained from the 3-section 90° phase

shifter indicate that the Z., tend to increase in value in

the interior parts of cascaded C-sections. This is anal-

ogous to what happens in cascaded directional couplers.

The coupling in decibels required by the 3rd section is

[12]

_20 ~oglo(2../20)’ – 1 ~B

(2../20)’ + 1 ‘
(64)

which gives a value of 1.63 dB. This requires very

tightly coupled lines, indeed. It can be anticipated that

for larger numbers of cascaded C-sections, the required

coupling in the interior sections will be even greater, and

therefore impractical to realize with the present state

of the art. One method [2] that may be used to get

around this is to use several groups of cascaded

C-sections in tandem, wherein each group provides only

a specified fraction of the desired total phase shift.

Thus, for example, if a 6-section C-section 90° differ-

ential phase shifter is called for, it might be better to

design two 3-section C-section 4.5° phase shifters and

connect them in tandem.

CONCLUSIONS

Cascaded transmission-line C-section all-pass net-

works are needed in many microwave systems that re-

quire phase shaping or phase equalization. The formulas

for analysis of commensurate transmission-line C-

sections all-pass networks are relatively easy to use and

should prove useful for diagnostics. The synthesis

method that was presented permits exact design of cas-

caded commensurate transmission-line C-section all-

pass networks from admissible prescribed phase

functions.

It was also found that the phase characteristic of

cascaded commensurate transmission-line C-sections is

the arctangent of a reactance function in the variable

tan 0. This result should enable the designer to deter-

mine more easily what phase characteristic can be

realized or approximated, as well as providing insight

into the approximation problem. The formulas which

were presented for designs of 1-, 2-, and 3-section

C-sections require only a slide-rule or desk calculator.

However, for a wide range of synthesis problems it will

probably be advantageous to use a digital computer.

More than 3 sections will almost certainly require a

computer.

The example design of a 3-section 90° differential

phase shifter had a tolerance of f 4° over a 4.52:1 fre-

quency band. The tolerance could probably be improved

by choosing the design constant B, equal to 1.85 or 1.9.

.%PPENDIX

GENERAL FORMULAS FOR IVti(s) AND Dfi(s) for

CASCADED COMMENSURATE-TRANSMISSION

LINE C-SECTIONS

‘Y. (s) = Nn(s)/U(s) (65)

N.(s) = ?21s + ?2,SZ + ;23s3 + . . n.sn (66)

D,,(s) = do + dIS + d# + . . ~dnsn (67)

F.(s) = .40+ /41s+ AN+ . . . .4.s”, (68)

where in (67) and (68) A o and dO are equal to 1.

(?ne Sedion

d, = (– A,’ – 1)/(2.4,) (69)

‘?’21= (Al~ — 1)/(2 A1). (70)
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Two Sections

d, = (A,2 + 1)/(2.4,) (71)

?Lz = (AJ – 1)/(2A2) (72)

dl = – (2 + 2d, + i412)/(2.4,) (73)

721= Al+ dl. (74)

Three Sections

(–.4,’ – I)/(zA,) (75)

(A,2 – 1)/(2413) (76)

3(nd – d3) – Alz(dt + ?23)+ AI(3 + Az’)

2(d3 + AIA2 – fig)
(77)

A2 – d, (78)

– (3 + A,z + 2d,)/(2.4,) (79)

Al+dl. (80)

Four Sections

The coefficients di are given by the solution to the

(81)

The coefficients ni are obtained using the d, from above

and (34) of the text.

General Ca~e oj” n Sections

In the general case the coefficients di are obtained

from the solution of the following linear set of equations.

,=0

For the following equations define

.4, =0 forp<Oor;>n,

~vhere P is a dummy index.

The coefficients a ,i are given by

a%] = 2A,%–, for i,j = O, 1, . )~.

The C< are given by

C; = bi+ (fe)i – (fO)i, fori = O, 1, . . . ~z

w-here

(82)

(83)

(84)

(85)

~ = (–1)’?2!
& (86)

~!(n — q!

(.fe)i = Z A~.4zi-ij (j even and ~~ n) (87)
j=o,2

(fo)t = z 44,~2z-j, (j odd and <w). (88)
&l,3

The coefficients ni are obtained from (34) after the

coefficients d, have been numerically evaluated.

Note that the forms of the rules given in (84) through

(88) are such as to make it possible to write down (82)

in matrix form by inspection. Let the first row and

column of the matrix be initialized as the zero ro~v and

zero column. Then the aij entries in the coefficient ma-

trix have the property that the sum of the jth column

and the subscript of A equals 2;. If this k not possible,

the entry is O. The column matrix of constants, Ci, con-

sists of 3 terms: b~, (~,) ~, and (~o) ~. The constants b, are

the binomial coefficients multiplied by (– I)i. The con-

stants (~,), are formed by summing all possilble terms of

the form Ad ~, where m and n are even integers (O is

taken as even) satisfying m + n = 2i. When m # n a

particular combination will occur twice, once for A ~A,.

and the other AnAm. When m = n, the combination

appears only once. Combinations formed such that

m +n# 2i are taken as O. An analogous rune holds for

the constants (~~),, except that m and n are odd integers.
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